A) 2
B) 3
C) 4
D) 8
Correct Answer: A
Solution :
[a] \[{{\tan }^{2}}\theta +{{\cot }^{2}}\theta =2\] |
\[\Rightarrow \,\,\,{{\tan }^{2}}\theta +{{\cot }^{2}}\theta =2\tan \theta \cdot \cot \theta \] |
\[\Rightarrow \,\,\,\,\,\,\,\,\,{{(\tan \theta -\cot \theta )}^{2}}=0\] |
\[\Rightarrow \,\,\,\,\,\,\,\,\,\tan \theta -\cot \theta =0\Rightarrow \,\tan \theta =\cot \theta \] |
\[\Rightarrow \,\,\,\,\,\,\,\,\,\theta =45{}^\circ \] |
\[\therefore \,\,\,\,\,{{\tan }^{3}}\theta +{{\cot }^{3}}\theta ={{\tan }^{3}}45{}^\circ +{{\cot }^{3}}45{}^\circ ={{(1)}^{3}}+{{(1)}^{3}}=2\] |
You need to login to perform this action.
You will be redirected in
3 sec