10th Class Mathematics Introduction to Trigonometry Question Bank MCQs - Introduction to Trigonometry

  • question_answer
    If \[{{\tan }^{2}}\theta +{{\cot }^{2}}\theta =2,\] \[\theta \]is an acute angle, then \[{{\tan }^{3}}\theta +{{\cot }^{3}}\theta \] is equal to:

    A) 2

    B) 3

    C) 4

    D) 8

    Correct Answer: A

    Solution :

    [a] \[{{\tan }^{2}}\theta +{{\cot }^{2}}\theta =2\]
    \[\Rightarrow \,\,\,{{\tan }^{2}}\theta +{{\cot }^{2}}\theta =2\tan \theta \cdot \cot \theta \]
    \[\Rightarrow \,\,\,\,\,\,\,\,\,{{(\tan \theta -\cot \theta )}^{2}}=0\]
    \[\Rightarrow \,\,\,\,\,\,\,\,\,\tan \theta -\cot \theta =0\Rightarrow \,\tan \theta =\cot \theta \]
    \[\Rightarrow \,\,\,\,\,\,\,\,\,\theta =45{}^\circ \]
    \[\therefore \,\,\,\,\,{{\tan }^{3}}\theta +{{\cot }^{3}}\theta ={{\tan }^{3}}45{}^\circ +{{\cot }^{3}}45{}^\circ ={{(1)}^{3}}+{{(1)}^{3}}=2\]


You need to login to perform this action.
You will be redirected in 3 sec spinner