10th Class Mathematics Introduction to Trigonometry Question Bank MCQs - Introduction to Trigonometry

  • question_answer
    If \[\theta\] is an acute angle such that \[{{\tan }^{2}}\theta =\frac{8}{7},\]then the value of \[\frac{(1+\sin \theta )(1-\sin \theta )}{(1+\cos \theta )(1-\cos \theta )}\] is:

    A) \[\frac{7}{8}\]

    B) \[\frac{8}{7}\]

    C) \[\frac{7}{4}\]

    D) \[\frac{64}{49}\]

    Correct Answer: A

    Solution :

    [a] We have,  \[\frac{(1+\sin \theta )\,\,(1-\sin \theta )}{(1+\cos \theta )\,\,(1-\cos \theta )}\]
    \[=\frac{1-{{\sin }^{2}}\theta }{1-{{\cos }^{2}}\theta }\] \[[\,\,\,(a-b)\,\,(a+b)\,={{a}^{2}}+{{b}^{2}}]\]
    \[=\frac{{{\cos }^{2}}\theta }{{{\sin }^{2}}\theta }\]  \[[1-{{\sin }^{2}}\theta ={{\cos }^{2}}\theta \,and\,\,1-{{\cos }^{2}}\theta ={{\sin }^{2}}\theta ]\]
    \[={{\cot }^{2}}\theta =\frac{1}{{{\tan }^{2}}\theta }=\frac{7}{8}\]\[\left[ {{\tan }^{2}}\theta =\frac{8}{7} \right]\]


You need to login to perform this action.
You will be redirected in 3 sec spinner