10th Class Mathematics Introduction to Trigonometry Question Bank MCQs - Introduction to Trigonometry

  • question_answer
    If \[a\,\cot \theta +b\,\text{cosec }\theta \,\text{= p}\]and \[b\,\cot \theta +a\,\text{cosec }\theta \,\text{= q,}\] then \[{{p}^{2}}-{{q}^{2}}=\]

    A) \[{{a}^{2}}-{{b}^{2}}\]

    B) \[{{b}^{2}}-{{a}^{2}}\]

    C) \[{{a}^{2}}+{{b}^{2}}\]

    D) \[b-a\]

    Correct Answer: B

    Solution :

    [b] We have, \[a\cot \theta +b\cos ec\,\theta =p\]  ...(1)
    \[b\cot \theta +a\cos ec\,\theta =q\] ...(2)
    Squaring and then subtracting eq. (2) from eq. (1), we get
    \[\therefore \,{{p}^{2}}-{{q}^{2}}={{a}^{2}}{{\cot }^{2}}\theta +{{b}^{2}}\cos e{{c}^{2}}\theta +2ab\,\cot \theta \,\cos ec\,\theta \]
    \[-{{b}^{2}}{{\cot }^{2}}\theta -{{a}^{2}}\cos e{{c}^{2}}\theta -2ab\cot \theta \,\,\text{cosec}\theta \]
    \[={{a}^{2}}({{\cot }^{2}}\theta -\cos e{{c}^{2}}\theta )+{{b}^{2}}(\cos e{{c}^{2}}\theta -{{\cot }^{2}}\theta )\]
    \[=-{{a}^{2}}+{{b}^{2}}\]\[[\cos e{{c}^{2}}\theta -{{\cot }^{2}}\theta =1]\]
    \[={{b}^{2}}-{{a}^{2}}\]


You need to login to perform this action.
You will be redirected in 3 sec spinner