A) \[\frac{{{y}^{2}}}{{{b}^{2}}}-\frac{{{x}^{2}}}{{{a}^{2}}}=1\]
B) \[\frac{{{x}^{2}}}{{{a}^{2}}}+\frac{{{y}^{2}}}{{{b}^{2}}}=1\]
C) \[\frac{{{x}^{2}}}{{{a}^{2}}}-\frac{{{y}^{2}}}{{{b}^{2}}}=1\]
D) \[\frac{{{x}^{2}}}{{{a}^{2}}}-\frac{{{y}^{2}}}{{{b}^{2}}}=0\]
Correct Answer: A
Solution :
[a] We have, \[x=a\tan \theta \] and \[y=b\sec \theta \] |
\[\Rightarrow \,\,\,\,\,\,\,\,\,\,\,\,\tan \theta =\frac{x}{a}\] and \[\sec \theta =\frac{y}{b}\] |
Putting these values in \[{{\sec }^{2}}\theta -{{\tan }^{2}}\theta =1,\] we get |
\[\frac{{{y}^{2}}}{{{b}^{2}}}-\frac{{{x}^{2}}}{{{a}^{2}}}=1\] |
You need to login to perform this action.
You will be redirected in
3 sec