A) \[\sec A\]
B) \[\sin A\]
C) \[\text{cosec A}\]
D) \[\text{cos A}\]
Correct Answer: D
Solution :
[d] \[(\sec A+\tan A)\,\,(1-\sin A)\] |
\[=\left( \frac{1}{\cos A}+\frac{\sin A}{\cos A} \right)\,\,\,(1-\sin A)=\frac{(1+\sin A)(1-\sin A)}{\cos A}\] |
\[=\frac{1-{{\sin }^{2}}A}{\cos A}=\frac{{{\cos }^{2}}A}{\cos A}\] \[[{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1]\] |
\[=\cos A.\] |
You need to login to perform this action.
You will be redirected in
3 sec