JEE Main & Advanced Mathematics Differentiation Question Bank Partial Differentiation

  • question_answer
    If \[u={{\log }_{e}}({{x}^{2}}+{{y}^{2}})+{{\tan }^{-1}}\left( \frac{y}{x} \right)\], then \[\frac{{{\partial }^{2}}u}{\partial {{x}^{2}}}+\frac{{{\partial }^{2}}u}{\partial {{y}^{2}}}=\]                                                               [EAMCET 2000]

    A)            0

    B)            2u

    C)            1/u

    D)            u

    Correct Answer: A

    Solution :

                       \[u={{\log }_{e}}({{x}^{2}}+{{y}^{2}})+{{\tan }^{-1}}\left( \frac{y}{x} \right)\]                    \[\frac{\partial u}{\partial x}=\frac{2x}{{{x}^{2}}+{{y}^{2}}}+\frac{1}{1+\frac{{{y}^{2}}}{{{x}^{2}}}}.\left( -\frac{y}{{{x}^{2}}} \right)\] \[=\frac{2x-y}{{{x}^{2}}+{{y}^{2}}}\]                    \[\frac{{{\partial }^{2}}u}{\partial {{x}^{2}}}=\frac{({{x}^{2}}+{{y}^{2}}).2-(2x-y)2x}{{{({{x}^{2}}+{{y}^{2}})}^{2}}}\] \[=\frac{2{{y}^{2}}-2{{x}^{2}}+2xy}{{{({{x}^{2}}+{{y}^{2}})}^{2}}}\]                    \[\frac{\partial u}{\partial y}=\frac{2y}{{{x}^{2}}+{{y}^{2}}}+\frac{1}{1+\frac{{{y}^{2}}}{{{x}^{2}}}}.\frac{1}{x}=\frac{2y+x}{{{x}^{2}}+{{y}^{2}}}\]                    \[\frac{{{\partial }^{2}}u}{\partial {{y}^{2}}}=\frac{({{x}^{2}}+{{y}^{2}}).2-(2y+x)2y}{{{({{x}^{2}}+{{y}^{2}})}^{2}}}\]= \[\frac{2{{x}^{2}}-2{{y}^{2}}-2xy}{{{({{x}^{2}}+{{y}^{2}})}^{2}}}\]                    \[\therefore \] \[\frac{{{\partial }^{2}}u}{\partial {{x}^{2}}}+\frac{{{\partial }^{2}}u}{\partial {{y}^{2}}}=0\].


You need to login to perform this action.
You will be redirected in 3 sec spinner