JEE Main & Advanced Mathematics Differentiation Question Bank Partial Differentiation

  • question_answer
    If \[z=\sec \,(y-ax)+\tan (y+ax),\] then \[\frac{{{\partial }^{2}}z}{\partial {{x}^{2}}}-{{a}^{2}}\frac{{{\partial }^{2}}z}{\partial {{y}^{2}}}=\]                    [EAMCET 2002]

    A)            z

    B)            2z

    C)            0

    D)            ?z

    Correct Answer: C

    Solution :

                       \[\frac{\partial z}{\partial x}=-a\sec (y-ax)\tan (y-ax)+a{{\sec }^{2}}(y+ax)\]                    \[\frac{{{\partial }^{2}}z}{\partial {{x}^{2}}}={{a}^{2}}{{\sec }^{3}}(y-ax)+{{a}^{2}}\sec (y-ax){{\tan }^{2}}(y-ax)\] \[+2{{a}^{2}}{{\sec }^{2}}(y+ax)\tan (y+ax)\]                    \[\frac{\partial z}{\partial y}=\sec (y-ax)\tan (y-ax)+{{\sec }^{2}}(y+ax)\]                    \[\frac{{{\partial }^{2}}z}{\partial {{y}^{2}}}={{\sec }^{3}}(y-ax)+\sec (y-ax){{\tan }^{2}}(y-ax)\] \[+2{{\sec }^{2}}(y+ax)\tan (y+ax)\]                    \[\therefore \] \[\frac{{{\partial }^{2}}z}{\partial {{x}^{2}}}-{{a}^{2}}\frac{{{\partial }^{2}}z}{\partial {{y}^{2}}}=0\]


You need to login to perform this action.
You will be redirected in 3 sec spinner