JEE Main & Advanced Mathematics Definite Integration Question Bank Properties of Definite Integration

  • question_answer
    The smallest interval \[[a,\,\,b]\] such that \[\int_{0}^{1}{\frac{dx}{\sqrt{1+{{x}^{4}}}}}\in [a,\,\,b]\] is given by

    A)                 \[\left[ \frac{1}{\sqrt{2}},\,\,1 \right]\] 

    B)                 \[[0,\,\,1]\]

    C)                 \[\left[ \frac{1}{2},\,\,2 \right]\]               

    D)                 \[\left[ \frac{3}{4},\,\,1 \right]\]

    Correct Answer: A

    Solution :

               Let \[I=\int_{0}^{1}{\frac{dx}{\sqrt{1+{{x}^{4}}}}}\]            Here, \[0\le x\le 1\Rightarrow 1\le (1+{{x}^{4}})\le 2\]            Þ \[1\le \sqrt{1+{{x}^{4}}}\le \sqrt{2}\Rightarrow \frac{1}{\sqrt{2}}\le \frac{1}{\sqrt{1+{{x}^{4}}}}\le 1\]            Þ \[\frac{1}{\sqrt{2}}\le \int_{0}^{1}{\frac{dx}{\sqrt{1+{{x}^{4}}}}\le 1}\]            Hence \[\left[ \frac{1}{\sqrt{2}},\,1 \right]\] is the smallest interval, such that \[I\in \left[ \frac{1}{\sqrt{2}},\,\,1 \right]\].                 Note: If \[m=\]least value of \[f(x)\]and M= greatest value of \[f(x)\]in [a, b], then \[m(b-a)\le \int_{a}^{b}{f(x)dx\le M(b-a)}\].


You need to login to perform this action.
You will be redirected in 3 sec spinner