JEE Main & Advanced Mathematics Definite Integration Question Bank Properties of Definite Integration

  • question_answer
    \[\int_{0}^{\pi /2}{\frac{x\sin x\cos x}{{{\cos }^{4}}x+{{\sin }^{4}}x}}\,dx=\]                                        [IIT 1985]

    A)                 0             

    B)                 \[\frac{\pi }{8}\]

    C)                 \[\frac{{{\pi }^{2}}}{8}\]

    D)                 \[\frac{{{\pi }^{2}}}{16}\]

    Correct Answer: D

    Solution :

               \[I=\int_{0}^{\pi /2}{\frac{x\sin x\cos x}{{{\cos }^{4}}x+{{\sin }^{4}}x}dx}\]               .....(i)                      \[=\int_{0}^{\pi /2}{\frac{\left( \frac{\pi }{2}-x \right)\cos x\sin x}{{{\sin }^{4}}x+{{\cos }^{4}}x}}\]       .....(ii)                    By adding (i) and (ii), we get \[2I=\frac{\pi }{2}\int_{0}^{\pi /2}{\frac{\cos x\sin x}{{{\cos }^{4}}x+{{\sin }^{4}}x}}\]dx                    Þ \[I=\frac{\pi }{4}\int_{0}^{\pi /2}{\frac{\tan x{{\sec }^{2}}x}{1+{{\tan }^{4}}x}dx}\]                    Now, Put \[{{\tan }^{2}}x=t\], we get                                 \[I=\frac{\pi }{8}\int_{0}^{\infty }{\frac{dt}{1+{{t}^{2}}}=\frac{\pi }{8}[{{\tan }^{-1}}t]_{0}^{\infty }=\frac{{{\pi }^{2}}}{16}}\].


You need to login to perform this action.
You will be redirected in 3 sec spinner