JEE Main & Advanced Mathematics Definite Integration Question Bank Properties of Definite Integration

  • question_answer
    If \[(n-m)\] is odd and \[|m|\,\ne \,|n|,\] then \[\int_{0}^{\pi }{\cos mx\sin nx}\,dx\] is

    A)                 \[\frac{2n}{{{n}^{2}}-{{m}^{2}}}\]            

    B)                 0

    C)                 \[\frac{2n}{{{m}^{2}}-{{n}^{2}}}\]            

    D)                 \[\frac{2m}{{{n}^{2}}-{{m}^{2}}}\]

    Correct Answer: A

    Solution :

               \[I=\frac{1}{2}\int_{0}^{\pi }{[\,\sin (m+n)x-\sin (m-n)x]dx}\]                      \[=-\frac{1}{2}\left[ \frac{\cos (m+n)x}{m+n}-\frac{\cos (m-n)x}{m-n} \right]_{0}^{\pi }\]                      \[=-\frac{1}{2}\left[ \left\{ \frac{{{(-1)}^{m+n}}}{m+n}-\frac{{{(-1)}^{m-n}}}{m-n}- \right\}-\left\{ \frac{1}{m+n}-\frac{1}{m-n} \right\} \right]\]            Since n ? m is odd, therefore \[n+m\]must be odd, so \[{{(-1)}^{m+n}}={{(-1)}^{m-n}}=-1\].            Also, since \[|m|\ne |n|,m+n\ne 0,m-n\ne 0\]                                 \ \[I=\frac{1}{m+n}-\frac{1}{m-n}=\frac{m+n-m-n}{{{m}^{2}}-{{n}^{2}}}=\frac{2n}{{{n}^{2}}-{{m}^{2}}}\].


You need to login to perform this action.
You will be redirected in 3 sec spinner