JEE Main & Advanced Mathematics Binomial Theorem and Mathematical Induction Question Bank Self Evaluation Test - Binomial Theorem

  • question_answer
    If \[\pi (n)\] denotes product of all binomial coefficients in \[{{(1+x)}^{n}}\] then ratio of \[\pi (2002)\] to \[\pi (2001)\] is

    A) 2002

    B) \[\frac{{{(2002)}^{2001}}}{(2001)!}\]

    C) \[\frac{{{(2001)}^{2002}}}{(2002)!}\]

    D) 2001

    Correct Answer: B

    Solution :

    [b] \[\frac{\pi (n)}{\pi (n+1)}=\frac{^{n}{{C}_{0}}{{.}^{n}}{{C}_{1}}{{.}^{n}}{{C}_{2}}{{...}^{n}}{{C}_{n}}}{^{n+1}{{C}_{0}}{{.}^{n+1}}{{C}_{1}}{{.}^{n+1}}{{C}_{2}}{{...}^{n+1}}{{C}_{n+1}}}\]
    \[=\frac{1}{^{n+1}{{C}_{0}}}\left( \frac{^{n}{{C}_{0}}}{^{n+1}{{C}_{1}}} \right)\left( \frac{^{n}{{C}_{1}}}{^{n+1}{{C}_{2}}} \right).....\left( \frac{^{n}{{C}_{n}}}{^{n+1}{{C}_{n+1}}} \right)\]
    \[=\frac{1}{1}\left( \frac{1}{n+1} \right)\left( \frac{2}{n+1} \right)......\left( \frac{n+1}{n+1} \right)\]
                \[\left[ \because \,\frac{^{n}{{C}_{r}}}{^{n+1}{{C}_{r+1}}}=\frac{r+1}{n+1} \right]\]
    \[=\frac{(n+1)!}{{{(n+1)}^{n+1}}}=\frac{n!}{{{(n+1)}^{n}}}\]
    \[\therefore \,\,\,\,\,\frac{\pi (2002)}{\pi (2001)}=\frac{{{(2002)}^{2001}}}{(2001)!}\]


You need to login to perform this action.
You will be redirected in 3 sec spinner