JEE Main & Advanced Mathematics Limits, Continuity and Differentiability Question Bank Self Evaluation Test - Continuity and Differentiability

  • question_answer
    Let \[f(x)=\left\{ \begin{align}   & {{5}^{1/x}},x<0 \\  & \lambda [x],x\ge 0 \\ \end{align} \right.\] and \[\lambda \in R\], then at x = 0

    A) f is discontinuous

    B) f is continuous only, if \[\lambda =0\]

    C) f is continuous only, whatever \[\lambda \] may be

    D) None of these

    Correct Answer: A

    Solution :

    [a] As we know.
    A function f(x) is said to be continuous as a point x = a iff
    \[\underset{x\to a}{\mathop{\lim }}\,\,\,f(x)=f(a),\] otherwise not continuous.
    Thus f(x) is continuous at x = a iff
    \[\underset{x\to {{a}^{-}}}{\mathop{\lim }}\,\,\,f(x)=\underset{x\to {{a}^{+}}}{\mathop{\lim }}\,f(x)=f(a)\]
    Since, \[f(x)=\left\{ \begin{matrix}    {{5}^{1/x}}, & x<0  \\    \lambda [x], & x\ge 0  \\ \end{matrix}and\,\,\lambda \in R \right.\]
    RHL \[at\,x=0:\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,\,f(x)=\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,\lambda [x]\]
    \[=\underset{h\to 0}{\mathop{\lim }}\,\lambda [h]=0\]
    LHL at \[x=0:\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,\,f(x)=\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,{{5}^{1/x}}\]
    \[=\underset{h\to 0}{\mathop{\lim }}\,\,{{5}^{-1/h}}={{5}^{\infty }}=\infty \]
    and \[f(0)=\lambda [0]=0.\]
    Since, LHL\[\ne \]RHL
    \[\therefore \]      \[f(x)\] is not continuous.


You need to login to perform this action.
You will be redirected in 3 sec spinner