JEE Main & Advanced Mathematics Limits, Continuity and Differentiability Question Bank Self Evaluation Test - Continuity and Differentiability

  • question_answer
    Consider the following in respect of the function \[f(x)=\left\{ \begin{matrix}    2+x, & x\ge 0  \\    2-x, & x<0  \\ \end{matrix} \right.\]
    1. \[\underset{x\to 1}{\mathop{\lim \,f}}\,(x)\] does not exist.
    2. f(x) is differentiable at x = 0
    3. f(x) is continuous at x = 0
    Which of the above statements is/are correct?

    A) 1 only

    B) 3 only

    C) 2 and 3 only

    D) 1 and 3 only

    Correct Answer: D

    Solution :

    [d] For \[x\ge 0\]
    \[\underset{x\to 1}{\mathop{\lim }}\,f(x)=\underset{x\to 1}{\mathop{\lim }}\,2+x=2+1=3\]
    For \[x<0\]
    \[\underset{x\to 1}{\mathop{\lim }}\,f(x)=\underset{x\to 1}{\mathop{\lim }}\,2-x=2-1=1\]
    So, \[\underset{x\to 1}{\mathop{\lim }}\,f(x)\] does not exist.
    At \[x=0\]
    \[RHL:\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,f(0+h)=\underset{h\to 0}{\mathop{\lim }}\,2+h=2\]\[LHL:\underset{h\to {{0}^{-}}}{\mathop{\lim }}\,f(0-h)=\underset{h\to 0}{\mathop{\lim }}\,2-h=2\]
    \[f(0)=2+0=2.\]
    So, RHL = LHL = f(0)
    \[\Rightarrow f(x)\] is continuous at \[x=0\]
    Differentiability at \[x=0\]
    \[LHD:\underset{h\to {{0}^{-}}}{\mathop{\lim }}\,\frac{f(0-h)-f(0)}{-h}=\underset{h\to {{0}^{-}}}{\mathop{\lim }}\,\frac{2+h-2}{-h}\]
                \[=\frac{-h}{h}=-1\]
    \[RHD:\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\frac{f(0+h)-f(0)}{h}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\frac{2+h-2}{h}=1\]
    Since \[LHD\ne RHD\]
    So, \[f(x)\] is not differentiable at \[x=0\]


You need to login to perform this action.
You will be redirected in 3 sec spinner