JEE Main & Advanced Mathematics Limits, Continuity and Differentiability Question Bank Self Evaluation Test - Continuity and Differentiability

  • question_answer
    Which of the following functions is not differentiable at\[x=1\]?

    A) \[f(x)=({{x}^{2}}-1)\left| (x-1)(x-2) \right|\]

    B) \[f(x)=\sin (\left| x-1 \right|)-\left| x-1 \right|\]

    C) \[f(x)=\tan (\left| x-1 \right|)+\left| x-1 \right|\]

    D) None of these

    Correct Answer: C

    Solution :

    [c] \[f(x)=({{x}^{2}}-1)\left| (x-1)(x-2) \right|\]
    \[f'({{1}^{+}})=\underset{h\to 0}{\mathop{\lim }}\,\frac{({{(1+h)}^{2}}-1)\left| h\cdot (1+h-2) \right|-0}{h}=0,f'({{1}^{-}})\]\[=\underset{h\to 0}{\mathop{\lim }}\,\frac{({{(1-h)}^{2}}-1)\left| -h\cdot (1-h-2) \right|-0}{-h}=0\]
    Hence, it is differentiable at x = 0
    For, \[f(x)=sin(\left| x-1 \right|)-\left| x-1 \right|\]
    \[f'({{0}^{+}})=\underset{h\to 0}{\mathop{lim}}\,\frac{\sin \,h-h-0}{h}=0,f'({{0}^{-}})\]
    \[=\underset{h\to 0}{\mathop{\lim }}\,\frac{\sin \left| -h \right|-\left| -h \right|}{-h}=0\underset{h\to 0}{\mathop{\lim }}\,\frac{\sin \,h-h}{-h}=0\]
    Hence, \[f(x)\] is differentiable at \[x=0\]
    For \[f(x)=\tan (\left| x-1 \right|)+\left| x-1 \right|\]
    \[f'({{0}^{+}})=\underset{h\to 0}{\mathop{\lim }}\,\frac{\tan \,h+h-0}{h}=2\],
    \[f'({{0}^{-}})=\underset{h\to 0}{\mathop{\lim }}\,\frac{\tan \left| -h \right|+\left| -h \right|}{-h}=\underset{h\to 0}{\mathop{\lim }}\,\frac{\tan \,h+h}{-h}=-2\]


You need to login to perform this action.
You will be redirected in 3 sec spinner