JEE Main & Advanced Mathematics Limits, Continuity and Differentiability Question Bank Self Evaluation Test - Continuity and Differentiability

  • question_answer
    What is the set of all points, where the function \[f(x)=\frac{x}{1+\left| x \right|}\] is differentiable?

    A) \[(-\infty ,\infty )\] only

    B) \[(0,\infty )\] only

    C) \[(-\infty ,0)\cup (0,\infty )\]only

    D) \[(-\infty ,0)\] only

    Correct Answer: A

    Solution :

    [a] Given \[f(x)=\frac{x}{1+\left| x \right|}\]
    \[=\left\{ \begin{matrix}    \frac{x}{1-x},x<0  \\    \frac{x}{1+x},x\ge 0  \\ \end{matrix} \right.\]
    \[\left( \because \left| x \right|=\left\{ \begin{matrix}    x & if & x\ge 0  \\    -x & if & x<0  \\ \end{matrix} \right. \right)\]
    \[\therefore LHD=f'({{0}^{-}})=\underset{h\to 0}{\mathop{\lim }}\,\frac{f(0-h)-f(0)}{-h}\]
    \[=\underset{h\to 0}{\mathop{\lim }}\,\frac{f(-h)-f(0)}{-h}\]
    \[=\underset{h\to 0}{\mathop{\lim }}\,\frac{\frac{-h}{1+\left| -h \right|}-0}{-h}\]
    \[=\underset{h\to 0}{\mathop{\lim }}\,\frac{\frac{-h}{1+h}-0}{-h}=\underset{h\to 0}{\mathop{\lim }}\,\frac{1}{1+h}=1\]
    and RHD \[=f'({{0}^{+}})\]
    \[=\underset{h\to 0}{\mathop{\lim }}\,\frac{f(0+h)-f(0)}{h}\]
    \[=\underset{h\to 0}{\mathop{\lim }}\,\frac{\frac{h}{1+h}-0}{h}=\underset{h\to 0}{\mathop{\lim }}\,\frac{1}{1+h}=1\]
    Since, LHD = RHD
    \[\therefore f(x)\] is differentiable at \[x=0\]
    Hence, \[f(x)\] is differentiable in \[(-\infty ,\infty )\].


You need to login to perform this action.
You will be redirected in 3 sec spinner