JEE Main & Advanced Mathematics Limits, Continuity and Differentiability Question Bank Self Evaluation Test - Continuity and Differentiability

  • question_answer
    Let \[0<x<\pi \] and y(x) be given by\[(1+\sin \,x){{y}^{3}}-(\cos \,x){{y}^{2}}+2(1+\sin \,x)\] \[y-2\,\cos \,x=0\]. The derivative of y with respect to \[\tan \frac{x}{2}\] at \[x=\frac{\pi }{2}\] is:

    A) \[\frac{1}{2}\]

    B) \[-\frac{1}{2}\]

    C) \[2\]

    D) \[-2\]

    Correct Answer: B

    Solution :

    [b] The given eq. can be written as
    \[({{y}^{2}}+2)\left( y-\frac{\cos x}{1+\sin x} \right)=0\]
    \[\Rightarrow y=\frac{\cos x}{1+\sin x}[\because {{y}^{2}}+2\ne 0]\]
    \[=\frac{\frac{1-{{\tan }^{2}}\frac{x}{2}}{1+{{\tan }^{2}}\frac{x}{2}}}{1+\frac{2\tan \frac{x}{2}}{1+{{\tan }^{2}}\frac{x}{2}}}=\frac{1-{{t}^{2}}}{1+{{t}^{2}}+2t}=\frac{(1-t)(1+t)}{{{(1+t)}^{2}}}\]
    \[=\frac{1-t}{1+t}=\frac{2}{1+t}-1,\]    where \[t=\tan \frac{x}{2}\]
    \[\Rightarrow y'(t)=\frac{-2}{{{(1+t)}^{2}}}.At\,x=\frac{\pi }{2},t=1\]
    \[\therefore \,\,y'(1)=\frac{-2}{{{(1+1)}^{2}}}=-\frac{1}{2}\]


You need to login to perform this action.
You will be redirected in 3 sec spinner