JEE Main & Advanced Mathematics Limits, Continuity and Differentiability Question Bank Self Evaluation Test - Continuity and Differentiability

  • question_answer
    Which one of the following is correct in respect of the function \[f(x)=\left| x \right|+{{x}^{2}}\]

    A) \[f(x)\] is not continuous at x = 0

    B) \[f(x)\] is differentiable at x = 0

    C) \[f(x)\] is continuous but not differentiable at x = 0

    D) None of the above

    Correct Answer: C

    Solution :

    [c] \[\because f(x)=\left| x \right|+{{x}^{2}}\]
    \[\Rightarrow f(x)=\left\{ \begin{matrix}    {{x}^{2}}+x, & x\ge 0  \\    {{x}^{2}}-x, & x<0  \\ \end{matrix} \right.\]
    LHL \[=\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,f(x)\]
    \[=\underset{h\to {{0}^{-}}}{\mathop{\lim }}\,f(0-h)=\underset{h\to 0}{\mathop{\lim }}\,{{(0-h)}^{2}}-(0-h)\]
    \[=\underset{h\,\to \,0}{\mathop{\lim }}\,{{h}^{2}}+h=0\]
    and RHL \[=\underset{x\to 0}{\mathop{\lim }}\,f(x)=\underset{h\to 0}{\mathop{\lim }}\,f(0+h)\]
    \[=\underset{h\to 0}{\mathop{\lim }}\,{{(0+h)}^{2}}+(0+h)\]
    \[=\underset{h\to 0}{\mathop{\lim }}\,{{h}^{2}}+h=0\]
    \[\Rightarrow LHL=RHL=f(0)\]
    \[\Rightarrow f(x)\] is continuous at \[x=0\]
    Now, \[LHD=\underset{h\to 0}{\mathop{\lim }}\,\frac{f(0-h)-f(0)}{-h}\]
    \[=\underset{h\to 0}{\mathop{\lim }}\,\frac{{{h}^{2}}+h}{-h}=-\underset{h\to 0}{\mathop{\lim }}\,h+1=-1\]
    and, \[RHD=\underset{h\to 0}{\mathop{\lim }}\,\frac{f(0+h)-f(0)}{h}\]
    \[=\underset{h\to 0}{\mathop{\lim }}\,\frac{{{h}^{2}}+h}{h}=\underset{h\to 0}{\mathop{\lim }}\,h+1=1\]
    Thus, \[LHD\ne RHD\]
    \[\Rightarrow f(x)\] is not differentiable at \[x=0\]


You need to login to perform this action.
You will be redirected in 3 sec spinner