JEE Main & Advanced Mathematics Limits, Continuity and Differentiability Question Bank Self Evaluation Test - Continuity and Differentiability

  • question_answer
    What is the derivative of\[{{\tan }^{-1}}\left( \frac{\sqrt{1+{{x}^{2}}}-1}{x} \right)\] with respect to \[{{\tan }^{-1}}x\]?

    A) 0

    B) \[\frac{1}{2}\]

    C) 1

    D) x

    Correct Answer: B

    Solution :

    [b] Let \[y={{\tan }^{-1}}\left[ \frac{\sqrt{1+{{x}^{2}}}-1}{x} \right]\] and \[u={{\tan }^{-1}}x\] Put \[x=\tan \theta \Rightarrow \theta ={{\tan }^{-1}}x\] Then, \[y={{\tan }^{-1}}\left[ \frac{\sqrt{1+{{\tan }^{2}}\theta }-1}{\tan \theta } \right]\] \[={{\tan }^{-1}}\left[ \frac{\sqrt{{{\sec }^{2}}\theta }-1}{\tan \theta } \right]\] \[={{\tan }^{-1}}\left[ \frac{\sec \theta -1}{\tan \theta } \right]={{\tan }^{-1}}\left[ \frac{\frac{1}{\cos \theta }-1}{\frac{\sin \theta }{\cos \theta }} \right]\] \[={{\tan }^{-1}}\left[ \frac{1-\cos \theta }{\sin \theta } \right]={{\tan }^{-1}}\left[ \frac{2{{\sin }^{2}}\frac{\theta }{2}}{2\sin \frac{\theta }{2},\cos \frac{\theta }{2}} \right]\] \[\left( \begin{align}   & \because 1-\cos \theta =2{{\sin }^{2}}\frac{\theta }{2}and \\  & \sin x=2\sin \frac{x}{2}\cdot \cos \frac{x}{2} \\ \end{align} \right)\] \[={{\tan }^{-1}}\left[ \tan \frac{\theta }{2} \right]\] \[\Rightarrow y=\frac{\theta }{2}\Rightarrow y=\frac{{{\tan }^{-1}}x}{2}[\because \theta ={{\tan }^{-1}}x]\] \[\Rightarrow y=\frac{u}{2};\frac{dy}{du}=\frac{1}{2}\]


You need to login to perform this action.
You will be redirected in 3 sec spinner