JEE Main & Advanced Mathematics Limits, Continuity and Differentiability Question Bank Self Evaluation Test - Continuity and Differentiability

  • question_answer
    If the functions \[f(x)\] and \[g(x)\] are continuous in [a, b] and differentiable in (a, b), then the equation \[\left| \begin{matrix}    f(a) & f(b)  \\    g(a) & g(b)  \\ \end{matrix} \right|=(b-a)\left| \begin{matrix}    f(a) & f'(x)  \\    g(a) & g'(x)  \\ \end{matrix} \right|\] has in the interval [a, b]

    A) At least one root

    B) Exactly one root

    C) At most one root

    D) No root

    Correct Answer: A

    Solution :

    [a] Let
    \[h(x)=\left| \begin{matrix}    f(a) & f(x)  \\    g(a) & g(x)  \\ \end{matrix} \right|=f(a)g(x)-g(a)f(x)\]
    Then,
    \[h'(x)=f(a)g'(x)-g(a)f'(x)=\left| \begin{matrix}    f(a) & f'(x)  \\    g(a) & g'(x)  \\ \end{matrix} \right|\]
    Since, \[f(x)\] and \[g(x)\] are continuous in \[[a,b]\] and differentiable in (a, b), therefore h(x) is also continuous in [a, b] and differentiable in (a, b). so, by mean value theorem, there exists at least one real number \[c,a<c<b\] for which
    \[h'(c)=\frac{h(b)-h(a)}{b-a},\]
    \[\therefore h(b)-h(a)=(b-a)h'(c)\]               ?. (i)
    Here,
    \[h(a)=\left| \begin{matrix}    f(a) & f(a)  \\    g(a) & g(a)  \\ \end{matrix} \right|=0,h(b)=\left| \begin{matrix}    f(a) & f(b)  \\    g(a) & g(b)  \\ \end{matrix} \right|\]
    \[\therefore \] From Eq. (i), \[\left| \begin{matrix}    f(a) & f(b)  \\    g(a) & g(b)  \\ \end{matrix} \right|=(b-a)h'(c)\]
    \[=(b-a)\left| \begin{matrix}    f(a) & f'(c)  \\    g(a) & g'(c)  \\ \end{matrix} \right|\]


You need to login to perform this action.
You will be redirected in 3 sec spinner