JEE Main & Advanced Mathematics Determinants & Matrices Question Bank Self Evaluation Test - Determinats

  • question_answer
    If \[\left| \begin{matrix}    a & \cot A/2 & \lambda   \\    b & \cot B/2 & \mu   \\    c & \operatorname{cotC}/2 & \gamma   \\ \end{matrix} \right|=0,\] where a, b, c, A, B, and C are elements of a triangle ABC with usual meaning. Then, the value of a \[(\mu -\gamma )+b(\gamma -\lambda )+c(\lambda -\mu )=0\] is

    A) \[0\]

    B) \[abc\]

    C) \[ab+bc+ca\]

    D) \[2abc\]

    Correct Answer: A

    Solution :

    [a] Given, \[\left| \begin{matrix}    a & \cot \,\,A/2 & \lambda   \\    b & \cot \,\,B/2 & \mu   \\    c & \cot \,\,c/2 & \gamma   \\ \end{matrix} \right|=0\] \[\Rightarrow \left| \begin{matrix}    a & \frac{s(s-a)}{\Delta } & \lambda   \\    b & \frac{s(s-b)}{\Delta } & \mu   \\    c & \frac{s(s-c)}{\Delta } & \gamma   \\ \end{matrix} \right|=0\] \[\Rightarrow \frac{1}{r}\left| \begin{matrix}    a & s-a & \lambda   \\    b & s-b & \mu   \\    c & s-c & \gamma   \\ \end{matrix} \right|=0\] Apply \[{{C}_{2}}\to {{C}_{2}}+{{C}_{1}}\] \[\Rightarrow \frac{1}{r}\left| \begin{matrix}    a & s & \lambda   \\    b & s & \mu   \\    c & s & \gamma   \\ \end{matrix} \right|=0,\] where \[r=\frac{\Delta }{s}\] \[\Rightarrow \frac{\Delta }{{{r}^{2}}}\left| \begin{matrix}    a & 1 & \lambda   \\    b & 1 & \mu   \\    c & 1 & \gamma   \\ \end{matrix} \right|=0\] Apply \[{{R}_{1}}\to {{R}_{1}}-{{R}_{2}},{{R}_{2}}\to {{R}_{2}}-{{R}_{3}}\] \[\Rightarrow \frac{\Delta }{{{r}^{2}}}\left| \begin{matrix}    a-b & 0 & \lambda -\mu   \\    b-c & 0 & \mu -\gamma   \\    c & 1 & \gamma   \\ \end{matrix} \right|=0\] \[\Rightarrow \frac{\Delta }{{{r}^{2}}}[(b-c)(\lambda -\mu )-(\mu -\gamma )(a-b)]=0\] \[\Rightarrow b(\lambda -\mu )-c(\lambda -\mu )-a(\mu -\gamma )+b(\mu -\gamma )=0\] \[\Rightarrow -a(\mu -\gamma )+b(\lambda -\mu +\mu -\gamma )-c(\lambda -\mu )=0\] \[\Rightarrow -a(\mu -\gamma )+b(\lambda -\gamma )-c(\lambda -\mu )=0\] \[\Rightarrow a(\mu -\gamma )+b(\gamma -\lambda )+c(\lambda -\mu )=0\]


You need to login to perform this action.
You will be redirected in 3 sec spinner