JEE Main & Advanced Mathematics Differential Equations Question Bank Self Evaluation Test - Differential Equations

  • question_answer
    What is the order of the differential equation\[\frac{dx}{dy}+\int{y\,dx={{x}^{3}}}\]?

    A) 1

    B) 2

    C) 3

    D) Cannot be determined

    Correct Answer: B

    Solution :

    [b] \[\frac{dx}{dy}+\int{y.dx={{x}^{3}}\Rightarrow \int{y.dx={{x}^{3}}-\frac{dx}{dy}}}\]
    \[\Rightarrow 1+\frac{dy}{dx}\left( \int{y.dx} \right)={{x}^{3}}.\frac{dy}{dx}\]
    Differentiate both sides w.e.t.x
    \[\Rightarrow 0+\frac{dy}{dx}(y)+\left( \int{y.dx} \right)\left( \frac{{{d}^{2}}y}{d{{x}^{2}}} \right)={{x}^{3}}.\frac{{{d}^{2}}y}{d{{x}^{2}}}+\frac{dy}{dx}(2{{x}^{2}})\]\[\Rightarrow y.\frac{dy}{dx}+\frac{{{d}^{2}}y}{d{{x}^{2}}}\left[ {{x}^{3}}-\frac{dx}{dy} \right]={{x}^{3}}.\frac{{{d}^{2}}y}{d{{x}^{2}}}+2{{x}^{2}}\frac{dy}{dx}\]
    \[\Rightarrow y\frac{dy}{dx}+{{x}^{3}}\frac{{{d}^{2}}y}{d{{x}^{2}}}-\left( \frac{dx}{dy} \right)\left( \frac{{{d}^{2}}y}{d{{x}^{2}}} \right)={{x}^{3}}\frac{{{d}^{2}}y}{d{{x}^{2}}}+2{{x}^{2}}\frac{dy}{dx}\]\[\Rightarrow y\frac{dy}{dx}-\frac{dx}{dy}.\frac{{{d}^{2}}y}{d{{x}^{2}}}=2{{x}^{2}}.\frac{dy}{dx}\]
    Multiplying both side by \[\frac{dy}{dx}\]
    \[y{{\left( \frac{dy}{dx} \right)}^{2}}-\frac{{{d}^{2}}y}{d{{x}^{2}}}=2{{x}^{2}}{{\left( \frac{dy}{dx} \right)}^{2}}\]
    \[\Rightarrow \frac{{{d}^{2}}y}{d{{x}^{2}}}+(2{{x}^{2}}-y){{\left( \frac{dy}{dx} \right)}^{2}}=0\]
    Order = 2, degree = 1.


You need to login to perform this action.
You will be redirected in 3 sec spinner