JEE Main & Advanced Mathematics Differential Equations Question Bank Self Evaluation Test - Differential Equations

  • question_answer
    The solution of the equation\[x\int\limits_{0}^{x}{y(t)dt=(x+1)\int_{0}^{x}{ty(t)dt,x>0}}\] is

    A) \[y=\frac{c}{{{x}^{3}}}{{e}^{{{x}^{3}}}}\]

    B) \[y=c{{x}^{3}}{{e}^{-{{x}^{3}}}}\]

    C) \[\frac{c}{{{x}^{3}}}{{e}^{-x}}\]

    D) None of these

    Correct Answer: D

    Solution :

    [d] The equation is
    \[x\int_{0}^{x}{y(t)dt=(x+1)\int_{0}^{x}{ty(t)dt,}}\]               ? (i)
    Differentiating both the sides with respect to x, we get
    \[xy(x)+\int_{0}^{x}{y(t)dt=(x+1)xy(x)+\int_{0}^{x}{ty(t)dt}}\]
    \[\Rightarrow \int_{0}^{x}{y(t)dt={{x}^{2}}y(x)+\int_{0}^{x}{ty(t)dt}}\]                    ? (ii)
    Differentiating again with respect to x, we get
    \[y(x)=2xy(x)+{{x}^{2}}y'(x)+xy(x)\]
    \[\Rightarrow \,\,\,{{x}^{2}}\frac{dy}{dx}=(1-3x)y\]       \[[writing\,\,y(x)=y]\]
    \[\Rightarrow \frac{dy}{y}=\left( \frac{1-3x}{{{x}^{2}}} \right)dx=\left( \frac{1}{{{x}^{2}}}-\frac{3}{x} \right)dx\]
    Integrating we get, \[\log y=-\frac{1}{x}-3\log x+a,a\] is constant
    \[\Rightarrow \log y+3\log x=a-\frac{1}{x}\]
    \[\Rightarrow \log (y{{x}^{3}})=a-\frac{1}{x}\Rightarrow y{{x}^{3}}={{e}^{a-\frac{1}{x}}}=c.{{e}^{-\frac{1}{x}}}\]
    where \[c={{e}^{a}}\therefore y=\frac{c}{{{x}^{3}}}{{e}^{-\frac{1}{x}}}\]


You need to login to perform this action.
You will be redirected in 3 sec spinner