JEE Main & Advanced Mathematics Differential Equations Question Bank Self Evaluation Test - Differential Equations

  • question_answer
    The solution to the differential equation\[\frac{dy}{dx}=\frac{yf'(x)-{{y}^{2}}}{f(x)}\]Where \[f(x)\] is a given function is

    A) \[f(x)=y(x+c)\]

    B) \[f(x)=cxy\]

    C) \[f(x)=c(x+y)\]

    D) \[yf(x)=cx\]

    Correct Answer: A

    Solution :

    [a] We have \[\frac{dy}{dx}=\frac{f'(x)}{f(x)}y-\frac{{{y}^{2}}}{f(x)}\]
    \[\Rightarrow \frac{dy}{dx}-\frac{f'(x)}{f(x)}y=-\frac{{{y}^{2}}}{f(x)}\]
    Divide by \[{{y}^{2}}:{{y}^{-2}}\frac{dy}{dx}-{{y}^{-1}}\frac{f'(x)}{f(x)}=-\frac{1}{f(x)}\]
    Put \[{{y}^{-1}}=z\Rightarrow -{{y}^{-2}}\frac{dy}{dx}=\frac{dz}{dx}\]
    \[-\frac{dz}{dx}-\frac{f'(x)}{f(x)}(z)=-\frac{1}{f(x)}\]
    \[\Rightarrow \frac{dz}{dx}+\frac{f'(x)}{f(x)}z=\frac{1}{f(x)}\]
    I.F. \[={{e}^{\int{\frac{f'(x)}{f(x)}dx}}}={{e}^{\log f(x)}}=f(x)\]
    \[\therefore \] The solution is \[z(f(x))=\int{\frac{1}{f(x)}(f(x))dx+c}\]
    \[\Rightarrow {{y}^{-1}}(f(x))=x+c\Rightarrow f(x)=y(x+c)\]


You need to login to perform this action.
You will be redirected in 3 sec spinner