JEE Main & Advanced Mathematics Indefinite Integrals Question Bank Self Evaluation Test - Integrals

  • question_answer
    \[\int{\sqrt{\frac{x}{1-x}}dx}\] is equal to

    A) \[{{\sin }^{-1}}\sqrt{x}+c\]

    B) \[{{\sin }^{-1}}\{\sqrt{x}-\sqrt{x(1-x)\}}+c\]

    C) \[{{\sin }^{-1}}\sqrt{x(1-x)}+c\]

    D) \[{{\sin }^{-1}}\sqrt{x}-\sqrt{x(1-x)}+c\]

    Correct Answer: D

    Solution :

    [d] Put \[x={{\sin }^{2}}\theta \Rightarrow dx=2\sin \theta \cos \theta \] \[\therefore \int{\sqrt{\frac{x}{1-x}dx}}=\int{\frac{\sin \theta }{\cos \theta }.2\sin \theta \cos \theta d\theta }\] \[=\int{(1-cos2\theta )d\theta =\theta -\frac{1}{2}\sin 2\theta +c}\] \[={{\sin }^{-1}}\sqrt{x}-\sqrt{x(1-x)}+c\]


You need to login to perform this action.
You will be redirected in 3 sec spinner