JEE Main & Advanced Mathematics Indefinite Integrals Question Bank Self Evaluation Test - Integrals

  • question_answer
    What is \[\int{\frac{{{e}^{x}}(1+x)}{{{\cos }^{2}}\left( x{{e}^{x}} \right)}dx}\] equal to?

    A) \[x{{e}^{x}}+c\]

    B) \[\cos (x{{e}^{x}})+c\]

    C) \[\tan (x{{e}^{x}})+c\]

    D) \[x\cos ec(x{{e}^{x}})+c\] Where c is a constant of integration.

    Correct Answer: C

    Solution :

    [c] Let \[I=\int{\frac{{{e}^{x}}(1+x)}{{{\cos }^{2}}\left( x{{e}^{x}} \right)}dx}\] Put, \[x{{e}^{x}}=t\Rightarrow {{e}^{x}}(1+x)dx=dt\] \[\therefore I=\int{\frac{dt}{{{\cos }^{2}}t}=\int{{{\sec }^{2}}tdt=\tan t+c}}\] \[=\tan (x{{e}^{x}})+c\] where ?c? is a constant of integration.


You need to login to perform this action.
You will be redirected in 3 sec spinner