JEE Main & Advanced Mathematics Indefinite Integrals Question Bank Self Evaluation Test - Integrals

  • question_answer
    \[\underset{n\to \infty }{\mathop{Lim}}\,{{\left\{ \frac{n!}{{{(kn)}^{n}}} \right\}}^{\frac{1}{n}}},\] where \[k\ne 0\] is a constant and \[n\in N\] is equal to

    A) ke

    B) \[{{k}^{-1}}e\]

    C) \[k{{e}^{-1}}\]

    D) \[{{k}^{-1}}{{e}^{-1}}\]

    Correct Answer: D

    Solution :

    [d] Let \[P=\underset{n\to \infty }{\mathop{Lim}}\,{{\left\{ \frac{n!}{{{(kn)}^{n}}} \right\}}^{\frac{1}{n}}}\]
    Taking log of both the sides at the base e
    \[{{\log }_{e}}P=\underset{n\to \infty }{\mathop{Lim}}\,\frac{1}{n}{{\log }_{e}}\left\{ \frac{n!}{{{(kn)}^{n}}} \right\}\]
    \[=\underset{n\to \infty }{\mathop{Lim}}\,\frac{1}{n}{{\log }_{e}}\left\{ \frac{1}{kn}.\frac{2}{kn}.\frac{3}{kn}.........\,\,.........\frac{n}{kn} \right\}\]
    \[=\underset{n\to \infty }{\mathop{Lim}}\,\frac{1}{n}\left[ \log \left( \frac{1}{kn} \right)+\log \left( \frac{2}{kn} \right)+......+\log \left( \frac{n}{kn} \right) \right]\]
    \[=\underset{n\to \infty }{\mathop{Lim}}\,\frac{1}{n}\sum\limits_{r=1}^{n}{\log \left( \frac{r}{kn} \right)}\]
    \[=\int\limits_{0}^{1}{\log \left( \frac{x}{k} \right)dx=\int\limits_{0}^{1}{(\log \,\,x-\log \,\,k)dx}}\]
    \[=\int\limits_{0}^{1}{\log x\,dx-\int\limits_{0}^{1}{\log \,\,k\,\,dx}}\]
    \[=\left[ x\log x-x \right]_{0}^{1}-\log k\left[ x \right]_{0}^{1}\]
    \[=\left[ 0-1-0+0 \right]-\log k=-1-\log \,\,k\]
    \[=-(\log \,\,e+\log \,\,k)=-\log (ek)=\log \frac{1}{ek}\]
    [Value of \[x\,\,\log x\,\,at\,\,x=0\] is \[\underset{x\to {{0}^{+}}}{\mathop{Lim}}\,x\log x=0\]]
    \[\therefore \,\,\,\,\,P=\frac{1}{ek}={{k}^{-1}}{{e}^{-1}}\]


You need to login to perform this action.
You will be redirected in 3 sec spinner