JEE Main & Advanced Mathematics Indefinite Integrals Question Bank Self Evaluation Test - Integrals

  • question_answer
    If \[{{I}_{1}}=\int\limits_{0}^{\pi }{xf({{\sin }^{3}}x+{{\cos }^{2}}x)dx}\] and \[{{I}_{2}}=\pi \int\limits_{0}^{\pi /2}{f({{\sin }^{3}}x+{{\cos }^{2}}x)dx}\], then

    A) \[{{I}_{1}}=2{{I}_{2}}\]

    B) \[2{{I}_{1}}={{I}_{2}}\]

    C) \[{{I}_{1}}={{I}_{2}}\]

    D) \[{{I}_{1}}+{{I}_{2}}=0\]

    Correct Answer: C

    Solution :

    [c] Consider \[{{I}_{1}}=\int\limits_{0}^{\pi }{xf\left[ {{\sin }^{3}}x+{{\cos }^{2}}x \right]}dx\] \[=\int\limits_{0}^{\pi }{(\pi -x)f\left[ {{\sin }^{3}}(\pi -x)+{{\cos }^{2}}(\pi -x) \right]dx}\] \[=\int\limits_{0}^{\pi }{(\pi -x)f\left[ {{\sin }^{3}}x+{{\cos }^{2}}x \right]dx}\] \[=\int\limits_{0}^{\pi }{\pi f({{\sin }^{3}}x+{{\cos }^{2}}x)dx-\int\limits_{0}^{\pi }{xf({{\sin }^{3}}x+{{\cos }^{2}}x)dx}}\] \[=\int\limits_{0}^{\pi }{\pi f({{\sin }^{3}}x+{{\cos }^{2}}x)dx-{{I}_{1}}}\] \[\Rightarrow 2{{I}_{1}}=\int\limits_{0}^{\pi }{\pi f({{\sin }^{3}}x+{{\cos }^{2}}x)dx}\] \[2{{I}_{1}}=2\pi \int\limits_{0}^{\pi /2}{f({{\sin }^{3}}x+{{\cos }^{2}}x)dx}\] \[\Rightarrow {{I}_{1}}=\pi \int\limits_{0}^{\pi /2}{f({{\sin }^{3}}x+{{\cos }^{2}}x)dx}\]             \[{{I}_{1}}={{I}_{2}}\] (By definition of \[{{I}_{2}}\])


You need to login to perform this action.
You will be redirected in 3 sec spinner