JEE Main & Advanced Mathematics Indefinite Integrals Question Bank Self Evaluation Test - Integrals

  • question_answer
    If \[{{l}^{r}}(x)\] means log log log ??.x, the log being repeated r times. then \[\int{\{xl(x){{l}^{2}}(x){{l}^{3}}(x)....{{l}^{r}}(x)\}{{-}^{1}}dx}\] is equal to

    A) \[{{l}^{r+1}}(x)+C\]

    B) \[\frac{{{l}^{r+1}}(x)}{r+1}+C\]

    C) \[{{l}^{r}}(x)+C\]

    D) None

    Correct Answer: A

    Solution :

    [a] Putting \[{{I}_{1}}={{l}^{r+1}}(x)=t\] and \[\frac{1}{xl(x){{l}^{2}}(x)....{{l}^{r}}(x)}dx=dt\] we get, \[\int{\frac{1}{x{{l}^{2}}(x){{l}^{3}}(x).....{{l}^{r}}(x)}}\] \[=\int{1.dt=t+C={{l}^{r+1}}(x)+C}\]


You need to login to perform this action.
You will be redirected in 3 sec spinner