A) \[{{l}^{r+1}}(x)+C\]
B) \[\frac{{{l}^{r+1}}(x)}{r+1}+C\]
C) \[{{l}^{r}}(x)+C\]
D) None
Correct Answer: A
Solution :
[a] Putting \[{{I}_{1}}={{l}^{r+1}}(x)=t\] and \[\frac{1}{xl(x){{l}^{2}}(x)....{{l}^{r}}(x)}dx=dt\] we get, \[\int{\frac{1}{x{{l}^{2}}(x){{l}^{3}}(x).....{{l}^{r}}(x)}}\] \[=\int{1.dt=t+C={{l}^{r+1}}(x)+C}\]You need to login to perform this action.
You will be redirected in
3 sec