JEE Main & Advanced Mathematics Indefinite Integrals Question Bank Self Evaluation Test - Integrals

  • question_answer
    \[\int\limits_{0}^{\pi }{xf(\sin \,\,x)dx}\] is equal to

    A) \[\pi \int\limits_{0}^{\pi }{f(cos\,\,x)dx}\]

    B) \[\pi \int\limits_{0}^{\pi }{f(sin\,\,x)dx}\]

    C) \[\frac{\pi }{2}\int\limits_{0}^{\pi /2}{f(sin\,\,x)dx}\]

    D) \[\pi \int\limits_{0}^{\pi /2}{f(cos\,\,x)dx}\]

    Correct Answer: D

    Solution :

    [d] \[I=\int\limits_{0}^{\pi }{xf(\sin x)dx=\int\limits_{0}^{\pi }{(\pi -x)f(\sin \,\,x)dx}}\] \[=\pi \int\limits_{0}^{\pi }{f(\sin x)dx-I\Rightarrow 2I=\pi \int\limits_{0}^{\pi }{f(\sin \,\,x)dx}}\] \[I=\frac{\pi }{2}\int\limits_{0}^{\pi }{f(\sin \,\,x)dx=\pi \int\limits_{0}^{\pi /2}{f(\sin \,\,x)dx}}\] \[=\pi \int\limits_{0}^{\pi /2}{f(cos\,\,x)dx}\]


You need to login to perform this action.
You will be redirected in 3 sec spinner