JEE Main & Advanced Mathematics Indefinite Integrals Question Bank Self Evaluation Test - Integrals

  • question_answer
    \[\int{32{{x}^{3}}{{(\log \,\,x)}^{2}}dx}\] is equal to:

    A) \[8{{x}^{4}}{{(\log \,\,x)}^{2}}+C\]

    B) \[{{x}^{4}}\{8{{(\log \,\,x)}^{2}}-4(\log \,\,x)+1\}+C\]

    C) \[{{x}^{4}}\{8{{(\log \,\,x)}^{2}}-4(\log \,\,x)\}+C\]

    D) \[{{x}^{3}}\{{{(\log \,\,x)}^{2}}-2\log \,\,x\}+C\]

    Correct Answer: B

    Solution :

    [b] Let \[I=\int{32{{x}^{3}}{{(\log \,\,x)}^{2}}dx}\] \[=32\left\{ {{(log\,\,x)}^{2}}{{\frac{x}{4}}^{4}}-\int{2\log x\frac{1}{x}.\frac{{{x}^{4}}}{4}dx} \right\}\] \[=\frac{32}{4}{{x}^{4}}{{(\log \,\,x)}^{2}}-16\int{{{x}^{3}}\log x\,\,dx}\] \[=8{{x}^{4}}{{(\log x)}^{2}}-4{{x}^{4}}\log x+4\int{{{x}^{3}}dx}\] \[={{x}^{4}}\{8{{(\log \,\,x)}^{2}}-4\,\,\log \,\,x+1\}+C\]


You need to login to perform this action.
You will be redirected in 3 sec spinner