JEE Main & Advanced Mathematics Indefinite Integrals Question Bank Self Evaluation Test - Integrals

  • question_answer
    \[\left[ \sum\limits_{n=1}^{10}{\int\limits_{-2n-1}^{-2n}{{{\sin }^{27}}xdx}} \right]+\left[ \sum\limits_{n=1}^{10}{\int\limits_{2n}^{2n+1}{{{\sin }^{27}}}xdx} \right]=\]

    A) \[{{27}^{2}}\]

    B) \[-54\]

    C) \[54\]

    D) 0

    Correct Answer: D

    Solution :

    [d] General term of the series \[\sum\limits_{n=1}^{10}{\int\limits_{-2n-1}^{-2n}{{{\sin }^{27}}xdx}}\] is \[{{I}_{1}}=\int\limits_{-2n-1}^{-2n}{{{\sin }^{27}}xdx=\int\limits_{2n+1}^{2n}{{{\sin }^{27}}(-x)(-dx)}}\] \[=-\int\limits_{2n}^{2n+1}{{{\sin }^{27}}xdx=-{{I}_{2}}}\] Where \[{{I}_{2}}\] is general term of series \[\sum\limits_{n=1}^{10}{\int\limits_{2n}^{2n+1}{{{\sin }^{27}}xdx}}\] So \[{{I}_{1}}+{{I}_{2}}=0\] for all n


You need to login to perform this action.
You will be redirected in 3 sec spinner