JEE Main & Advanced Mathematics Indefinite Integrals Question Bank Self Evaluation Test - Integrals

  • question_answer
    What is \[\int{{{\sec }^{n}}x\tan xdx}\] equal to?

    A) \[\frac{{{\sec }^{n}}x}{n}+c\]

    B) \[\frac{{{\sec }^{n-1}}x}{n-1}+c\]

    C) \[\frac{{{\tan }^{n}}x}{n}+c\]

    D) \[\frac{{{\tan }^{n-1}}x}{n-1}+c\] Where ?c? is a constant of integration.

    Correct Answer: A

    Solution :

    [a] Let \[I=\int{{{\sec }^{n}}x\tan xdx.}\] Put, \[\sec x=t\Rightarrow \sec x\tan xdx=dt\] \[\therefore I=\int{{{t}^{n}}.\frac{dt}{t}}\] \[=\int{{{t}^{n-1}}dt=\frac{{{t}^{n}}}{n}+c=\frac{{{\sec }^{n}}x}{n}+c}\] Where ?c? is a constant of integration.


You need to login to perform this action.
You will be redirected in 3 sec spinner