A) \[f(1)g(1)-f(1)g'(1)\]
B) \[f(1)g'(1)+f'(1)g(1)\]
C) \[f(1)g'(1)-f'(1)g(1)\]
D) None of these
Correct Answer: C
Solution :
[c] Integrating by parts. \[\int{f(x)g''(x)dx-\int{f''(x)g(x)dx}}\] \[=f(x)g'(x)-\int{f'(x)g'(x)dx}\] \[-f'(x)g(x)+\int{f'(x)g'(x)dx}\] \[=f(x)g'(x)-f'(x)g(x)\] Hence, \[\int_{0}^{1}{f(x)g''(x)dx-\int_{0}^{1}{f''(x)g(x)dx}}\] \[=f(1)g'(1)-f'(1)g(1)-f(0)g'(0)+f'(0)g(0)\] \[=f(1)g'(1)-f'(1)g(1)\]You need to login to perform this action.
You will be redirected in
3 sec