JEE Main & Advanced Mathematics Indefinite Integrals Question Bank Self Evaluation Test - Integrals

  • question_answer
    If \[\int{\frac{1}{1+\sin x}dx=\tan \left( \frac{x}{2}+a \right)+b}\]  then

    A) \[a=-\frac{\pi }{4},b\in R\]

    B) \[a=\frac{\pi }{4},b\in R\]

    C) \[a=\frac{5\pi }{4},b\in R\]

    D) None of these

    Correct Answer: A

    Solution :

    [a] Let \[I=\int{\frac{1}{1+\sin x}dx=\int{\frac{dx}{1+\frac{2\tan \frac{x}{2}}{1+{{\tan }^{2}}\frac{x}{2}}}}}\]
                \[\int{\frac{\left( 1+{{\tan }^{2}}\frac{x}{2} \right)dx}{1+{{\tan }^{2}}\frac{x}{2}+2\tan \frac{x}{2}}=\int{\frac{{{\sec }^{2}}\frac{x}{2}dx}{1+{{\tan }^{2}}\frac{x}{2}+2\tan \frac{x}{2}}}}\]
    Substitute
    \[\tan \frac{x}{2}=t\Rightarrow \frac{1}{2}{{\sec }^{2}}\frac{x}{2}dx=dt\]
    \[\Rightarrow {{\sec }^{2}}\frac{x}{2}dx=2dt\].
    Then
                \[I=\int{\frac{2dt}{1+{{t}^{2}}+2t}=2\int{\frac{dt}{{{(1+t)}^{2}}}=2\frac{-1}{(1+t)}+C}}\]
    \[=\frac{-2}{1+\tan \frac{x}{2}}+c\]
    \[=1-\frac{2}{1+\tan \frac{x}{2}}+(c-1)=\frac{\tan \frac{x}{2}-1}{\tan \frac{x}{2}+1}+b\],
    Where \[b=c-1\], a new constant
    \[=-\frac{1-\tan \frac{x}{2}}{1+\tan \frac{x}{2}}+b=-\tan \left( \frac{\pi }{4}-\frac{\pi }{2} \right)+b\]
    \[=\tan \left( \frac{\pi }{2}-\frac{\pi }{4} \right)+b\]
    Clearly \[a=-\frac{\pi }{4}\] and \[b\in R\]


You need to login to perform this action.
You will be redirected in 3 sec spinner