A) \[f(x)g(x)\]
B) \[f(x)+g(x)\]
C) 0
D) None of theses
Correct Answer: C
Solution :
[c] Let \[\phi (x)=\left\{ f(x)+f(-x) \right\}\left\{ g(x)-g(-x) \right\}\] \[\phi \,(-x)=\left\{ f(-x)+f(x) \right\}\left\{ g(-x)-g(x) \right\}\] \[=-\left\{ f(x)+f(-x) \right\}\left\{ g(x)-g(-x) \right\}=-\phi (x)\] \[\therefore \,\,\,\,\varphi (x)\] is an odd function \[\Rightarrow \int\limits_{\frac{-\pi }{2}}^{\frac{\pi }{2}}{\phi (x)dx=0}\]You need to login to perform this action.
You will be redirected in
3 sec