JEE Main & Advanced Mathematics Indefinite Integrals Question Bank Self Evaluation Test - Integrals

  • question_answer
    \[\int{\frac{x-1}{{{(x+1)}^{2}}\sqrt{{{x}^{3}}+{{x}^{2}}+x}}dx}\] is equal to

    A) \[{{\tan }^{-1}}\sqrt{\frac{{{x}^{2}}+x+1}{x}}+C\]

    B) \[2{{\tan }^{-1}}\sqrt{\frac{{{x}^{2}}+x+1}{x}}+C\]

    C) \[3{{\tan }^{-1}}\sqrt{\frac{{{x}^{2}}+x+1}{x}}+C\]

    D) None of these

    Correct Answer: B

    Solution :

    [b] \[\int{\frac{x-1}{{{(x+1)}^{2}}\sqrt{{{x}^{3}}+{{x}^{2}}+x}}dx}\] \[=\int{\frac{({{x}^{2}}-1)}{({{x}^{2}}+2x+1).x\sqrt{x+\frac{1}{x}+1}}dx}\] \[=\int{\frac{\left( 1-\frac{1}{{{x}^{2}}} \right)}{\left( x+\frac{1}{x}+2 \right)\sqrt{x+\frac{1}{x}+1}}dx=\int{\frac{2zdz}{({{z}^{2}}+1).z}}}\] \[\left[ Putting\,\,x+\frac{1}{x}+1={{z}^{2}}\Rightarrow \left( 1-\frac{1}{{{x}^{2}}} \right)dx=2zdz \right]\] \[=2\int{\frac{dz}{1+{{z}^{2}}}=2{{\tan }^{-1}}z+C}\] \[=2{{\tan }^{-1}}\sqrt{\frac{{{x}^{2}}+x+1}{x}}+C\]


You need to login to perform this action.
You will be redirected in 3 sec spinner