JEE Main & Advanced Mathematics Indefinite Integrals Question Bank Self Evaluation Test - Integrals

  • question_answer
    If m is an integer, then \[\int_{0}^{\pi }{\frac{\sin (2mx)}{\sin x}dx}\] is equal to:

    A) 1

    B) 2

    C) 0

    D) \[\pi \]

    Correct Answer: C

    Solution :

    [c] Use \[\int_{0}^{a}{f(x)dx=\int_{0}^{a}{f(a-x)dx}}\] \[\int_{0}^{\pi }{\frac{\sin 2\,\,mx}{\sin \,\,x}dx=\int_{0}^{\pi }{\frac{\sin (2m\pi -2mx)}{\sin (\pi -x)}}dx}\] \[=\int_{0}^{\pi }{\frac{-\sin 2mx}{\sin x}dx=-I\Rightarrow 2I=0\Rightarrow I=0}\]


You need to login to perform this action.
You will be redirected in 3 sec spinner