JEE Main & Advanced Mathematics Indefinite Integrals Question Bank Self Evaluation Test - Integrals

  • question_answer
    What is \[\int{\sin x\log (\tan x)dx}\] equal to?

    A) \[\cos x\log \tan x+\log \,\,\tan (x/2)+c\]

    B) \[-\cos x\log \tan x+\log \,\,\tan (x/2)+c\]

    C) \[\cos x\log \tan x+\log \,\,\cot \,(x/2)+c\]

    D) \[-\cos x\log \tan x+\log \,\,\cot \,(x/2)+c\]

    Correct Answer: A

    Solution :

    [b] \[\int{\sin x\log (\tan x)dx}\]
    \[=-\cos x\log \tan x-\int{(-cosx)\frac{1}{\tan x}.{{\sec }^{2}}xdx}\]
    \[=-\cos x\log \tan x+\int{\frac{1}{\sin x}dx}\]
    \[=-\cos x\log (\tan x)+\int{\frac{1+{{\tan }^{2}}\frac{x}{2}}{2\tan \frac{x}{2}}dx}\]
    Now putting \[\frac{x}{2}=t,\] we get,
    \[=-\cos x\log \tan x+\int{\frac{1}{t}.dt}\]
    \[=-\cos x\log \tan x+\log (t)+c\]
    \[=-\cos x\log \tan x+\log \,\,tan\left( \frac{x}{2} \right)+c\]


You need to login to perform this action.
You will be redirected in 3 sec spinner