JEE Main & Advanced Mathematics Indefinite Integrals Question Bank Self Evaluation Test - Integrals

  • question_answer
    If \[\int{\frac{{{x}^{2}}-x+1}{{{x}^{2}}+1}{{e}^{{{\cot }^{-1}}x}}dx=A(x){{e}^{{{\cot }^{-1}}x}}+C}\], then \[A(x)\] is equal to:

    A) \[-x\]

    B) \[x\]

    C) \[\sqrt{1-x}\]

    D) \[\sqrt{1+x}\]

    Correct Answer: B

    Solution :

    [b] Let \[I=\int{\frac{{{x}^{2}}-x+1}{{{x}^{2}}+1}.{{e}^{{{\cot }^{-1}}x}}dx}\] Put \[x=\cot t\Rightarrow -\cos e{{c}^{2}}tdt=dx\] Now, \[1+{{\cot }^{2}}t=\cos e{{c}^{2}}t\] \[\therefore I=\int{\frac{{{e}^{t}}({{\cot }^{2}}t-\cot \,\,t+1)}{(1+{{\cot }^{2}}t)}}(-\cos e{{c}^{2}}t)dt\] \[=\int{{{e}^{t}}(\cot t-\cos e{{c}^{2}}t)dt={{e}^{t}}\cot t+C}\] \[={{e}^{{{\cot }^{-1}}x}}(x)+C\equiv A(x).{{e}^{{{\cot }^{-1}}x}}+C\Rightarrow A(x)=x\]


You need to login to perform this action.
You will be redirected in 3 sec spinner