JEE Main & Advanced Mathematics Indefinite Integrals Question Bank Self Evaluation Test - Integrals

  • question_answer
    The value of \[\int{{{e}^{ta{{n}^{-1}}}}^{x}\frac{(1+x+{{x}^{2}})}{1+{{x}^{2}}}dx}\] is

    A) \[x{{e}^{{{\tan }^{-1}}}}x+c\]

    B) \[{{\tan }^{-1}}x+C\]

    C) \[{{e}^{{{\tan }^{-1}}x}}+2x+C\]

    D) None of these

    Correct Answer: A

    Solution :

    [a] Put \[x=\tan \theta \Rightarrow dx={{\sec }^{2}}\theta d\theta \] \[I=\int{{{e}^{\theta }}\frac{1+\tan \theta +{{\tan }^{2}}\theta }{1+{{\tan }^{2}}\theta }.{{\sec }^{2}}\theta d\theta }\] \[=\int{{{e}^{\theta }}(tan\theta +se{{c}^{2}}\theta )d\theta }\] \[={{e}^{\theta }}\tan \theta +c=x{{e}^{{{\tan }^{-1}}x}}+c\]


You need to login to perform this action.
You will be redirected in 3 sec spinner