JEE Main & Advanced Mathematics Indefinite Integrals Question Bank Self Evaluation Test - Integrals

  • question_answer
    If \[f(x)=a+bx+c{{x}^{2}},\] then what is \[\int_{0}^{1}{f(x)dx}\] equal to?

    A) \[[f(0)+4f(1/2)+f(1)]/6\]

    B) \[[f(0)+4f(1/2)+f(1)]/3\]

    C) \[[f(0)+4f(1/2)+f(1)]\]

    D) \[[f(0)+2f(1/2)+f(1)]/6\]

    Correct Answer: A

    Solution :

    [a] Given, \[f(x)=a+bx+c{{x}^{2}}\]
    \[\therefore \,\,\,\,\int_{0}^{1}{f(x)dx=\int_{0}^{1}{(a+bx+c{{x}^{2}})dx}}\]
    \[=\left[ ax+\frac{b{{x}^{2}}}{2}+\frac{c{{x}^{3}}}{3} \right]_{0}^{1}\]
    \[=a+\frac{b}{2}+\frac{c}{3}...(i)\]
    Here, \[f(0)=a,f\left( \frac{1}{2} \right)=a+\frac{b}{2}+\frac{c}{4}\]
    and \[f(1)=a+b+c\]
    Now, \[\frac{f(0)+4f\left( \frac{1}{2} \right)+f(1)}{6}\]
    \[=\frac{a+4\left( a+\frac{b}{2}+\frac{c}{4} \right)+a+b+c}{6}\]
    \[=\frac{a+4\left( \frac{4a+2b+c}{4} \right)+a+b+c}{6}\]
    \[=\frac{a+4a+2b+c+a+b+c}{6}=\frac{6a+3b+2c}{6}\]
    \[=a+\frac{b}{2}+\frac{c}{3}\]
    \[\therefore \] From equations (i) and (ii), we get
    \[\int_{0}^{1}{f(x)dx=\frac{f(0)+4f\left( \frac{1}{2} \right)+f(1)}{6}}\]


You need to login to perform this action.
You will be redirected in 3 sec spinner