JEE Main & Advanced Mathematics Indefinite Integrals Question Bank Self Evaluation Test - Integrals

  • question_answer
    Let \[F(x)=f(x)+f\left( \frac{1}{x} \right),\] where \[f(x)=\int\limits_{l}^{x}{\frac{\log t}{1+t}dt}\], Then \[F(e)\] equals

    A) 1

    B) 2

    C) 1/2

    D) 0

    Correct Answer: C

    Solution :

    [c] Given \[F(x)=f(x)+f\left( \frac{1}{x} \right)\], where
    \[f(x)=\int_{1}^{x}{\frac{\log \,\,t}{1+t}dt}\]
    \[\therefore F(e)=f(e)+f\left( \frac{1}{e} \right)\]
    \[\Rightarrow F(e)=\int_{1}^{e}{\frac{\log t}{1+t}dt+\int_{1}^{1/e}{\frac{\log \,\,t}{1+t}dt...(A)}}\]
    Now for solving, \[I=\int_{1}^{1/e}{\frac{\log \,\,t}{1+t}dt}\]
    \[\therefore \] Put \[\frac{1}{t}=z\Rightarrow -\frac{1}{{{t}^{2}}}dt=dz\Rightarrow dt=-\frac{dz}{{{z}^{2}}}\]
    and limit for \[t=1\Rightarrow z=1\] and for \[t=1/e\Rightarrow z=e\]
    \[\therefore \,\,\,\,\,I=\int_{1}^{e}{\frac{\log \left( \frac{1}{z} \right)}{1+\frac{1}{z}}\left( -\frac{dz}{{{z}^{2}}} \right)}\]
    \[=\int_{1}^{e}{\frac{(\log 1-\log z).z}{z+1}\left( -\frac{dz}{{{z}^{2}}} \right)}\]
    \[=\int_{1}^{e}{-\frac{\log z}{(z+1)}\left( -\frac{dz}{z} \right)=\int_{1}^{e}{\frac{\log z}{z(z+1)}dz}}\]
    \[\therefore I=\int_{1}^{e}{\frac{\log t}{t(t+1)}dt}\]
    Equation [a] becomes:
    \[F(e)=\int_{1}^{e}{\frac{\log t}{1+t}dt+\int_{1}^{e}{\frac{\log t}{t(1+t)}dt}}\]
    \[=\int_{1}^{e}{\frac{t.\log t+\log t}{t(1+t)}dt=\int_{1}^{e}{\frac{(\log \,\,t)(t+1)}{t(1+t)}dt}}\]
    \[\Rightarrow F(e)=\int_{1}^{e}{\frac{\log t}{t}dt}\]
    Let \[\log \,\,t=x\therefore \frac{1}{t}dt=dx\]
    \[[for\,\,\lim it\,\,t=1,x=0\,\,and\,\,t=e,x=\log \,\,e=1]\]
    \[\therefore \,\,\,\,\,\,F(e)=\int_{0}^{1}{x}\,\,dx\,\,\,\,\,\,\,\,\,\,F(e)=\left[ \frac{{{x}^{2}}}{2} \right]_{0}^{1}\Rightarrow F(e)=\frac{1}{2}\]


You need to login to perform this action.
You will be redirected in 3 sec spinner