A) (3, 0)
B) \[\left( \frac{1}{2},\frac{5}{2} \right)\]
C) (7, 0)
D) (0, 5)
Correct Answer: D
Solution :
[d] We have, maximize \[Z=7x+y.\] subject to: |
\[5x+y\ge 5,x+y\ge 3,x,y\ge 0.\] |
Let \[{{\ell }_{1}}:5x+y=5\] |
\[{{\ell }_{2}}:x+y=3\] |
\[{{\ell }_{3}}:x=0\] and \[{{\ell }_{4}}:y=0\] |
Shaded portion is the feasible region, |
Where \[A(3,0),B\left( \frac{1}{2},\frac{5}{2} \right),C(0,5)\] |
![]() |
For B: solving \[{{\ell }_{1}}\] and\[{{\ell }_{2}}\], we get \[B\left( \frac{1}{2},\frac{5}{2} \right)\] |
Now maximize \[Z=7x+y\] |
Z at B \[\left( \frac{1}{2},\frac{5}{2} \right)=7\left( \frac{1}{2} \right)+\frac{5}{2}=6\] |
Z at C (0, 5) =7(0) +5=5 |
Thus Z, is minimized at C (0, 5) and its minimum value is 5 |
You need to login to perform this action.
You will be redirected in
3 sec