JEE Main & Advanced Mathematics Determinants & Matrices Question Bank Self Evaluation Test - Matrices

  • question_answer
    If AB = O, then for the matrices \[A=\left[ \begin{matrix}    {{\cos }^{2}}\theta  & \cos \theta \sin \theta   \\    \cos \theta \sin \theta  & {{\sin }^{2}}\theta   \\ \end{matrix} \right]\] and \[B=\left[ \begin{matrix}    {{\cos }^{2}}\phi  & \cos \phi \sin \phi   \\    \cos \phi \sin \phi  & {{\sin }^{2}}\phi   \\ \end{matrix} \right],\theta -\phi \] is

    A) An odd number of \[\frac{\pi }{2}\]

    B) An odd multiple of \[\pi \]

    C) An even multiple of \[\frac{\pi }{2}\]

    D)             0

    Correct Answer: A

    Solution :

    [a] We have, \[AB=\left[ \begin{matrix}    {{\cos }^{2}}\theta  & \cos \theta \sin \theta   \\    \cos \theta \sin \theta  & {{\sin }^{2}}\theta   \\ \end{matrix} \right]\]             \[\left[ \begin{matrix}    {{\cos }^{2}}\phi  & \cos \phi \sin \phi   \\    \cos \phi \sin \phi  & {{\sin }^{2}}\phi   \\ \end{matrix} \right]\] \[=\left[ \begin{matrix}    {{\cos }^{2}}\theta {{\cos }^{2}}\phi +\cos \theta \cos \phi \sin \theta \sin \phi   \\    \cos \theta \sin \theta {{\cos }^{2}}\phi +{{\sin }^{2}}\theta \cos \phi \sin \phi   \\ \end{matrix} \right.\] \[\left. \begin{align}   & {{\cos }^{2}}\theta \cos \phi \sin \phi +\cos \theta \sin \theta {{\sin }^{2}}\phi  \\  & \cos \theta \cos \phi \sin \theta \sin \phi +{{\sin }^{2}}\theta {{\sin }^{2}}\phi  \\ \end{align} \right]\] \[=\cos (\theta -\phi )\left[ \begin{matrix}    \cos \theta \cos \phi  & \cos \theta \sin \phi   \\    \sin \theta \cos \phi  & \sin \theta \sin \phi   \\ \end{matrix} \right]\] Since \[AB=0,\therefore \cos (\theta -\phi )=0\] \[\therefore \,\theta -\phi \] is an odd multiple of \[\frac{\pi }{2}\]


You need to login to perform this action.
You will be redirected in 3 sec spinner