JEE Main & Advanced Mathematics Functions Question Bank Self Evaluation Test - Relation and Functions-II

  • question_answer
    Let R be a relation on \[N\times N\] defined by \[(a,b)R(c,d)\Rightarrow ad(b+c)=bc(a+d).R\] is

    A) A partial order relation

    B) An equivalence relation

    C) An identity relation

    D) None of these

    Correct Answer: B

    Solution :

    [b] We observe the following properties:
    Reflexivity: Let (a, b) be an arbitrary element of\[N\times N\].
    Then, \[(a,b)\in N\times N\Rightarrow a,b\in N\]
    \[\Rightarrow ab(b+a)=ba(a+b)\Rightarrow (a,b)R(a,b)\]
    Thus, \[(a,b)R(a,b)\]for all \[(a,b)\in N\times N.\]
    So, R is reflexive on\[N\times N\].
    Symmetry: Let \[(a,b),(c,d)\in N\times N\]be such that \[(a,b)R(c,d).\] Then, \[(a,b)R(c,d)\]
    \[\Rightarrow ad(b+c)=bc(a+d)\]
    \[\Rightarrow \,\,\,cb(d+a)=da(c+b)\Rightarrow (c,d)R(a,b)\]
    Thus, \[(a,b)R(c,d)\Rightarrow (c,d)R(a,b)\] for all \[(a,b),(c,d)\in N\times N.\]
    So, R is symmetric on \[N\times N.\]
    Transitivity: Let \[(a,b),(c,d),(e,f)\in N\times N\]such that \[(a,b)R(c,d),and(c,d)R(e,f).\]
    Then, \[(a,b)R(c,d)\Rightarrow ad(b+c)=bc(a+d)\]
    \[\Rightarrow \frac{b+c}{bc}=\frac{a+d}{ad}\Rightarrow \frac{1}{b}+\frac{1}{c}=\frac{1}{a}+\frac{1}{d}\]                   ?. (i)
    And \[(c,d)R(e,f)\Rightarrow cf(d+e)=de(c+f)\]
    \[\Rightarrow \frac{d+e}{de}=\frac{c+f}{cf}\Rightarrow \frac{1}{d}+\frac{1}{e}=\frac{1}{c}+\frac{1}{f}\]                      ?. (ii)
    Adding (i) and (ii), we get
    \[\left( \frac{1}{b}+\frac{1}{c} \right)+\left( \frac{1}{d}+\frac{1}{e} \right)=\left( \frac{1}{a}+\frac{1}{d} \right)+\left( \frac{1}{c}+\frac{1}{f} \right)\]
    \[\Rightarrow \frac{1}{b}+\frac{1}{e}=\frac{1}{a}+\frac{1}{f}\Rightarrow \frac{b+e}{be}=\frac{a+f}{af}\]
    \[\Rightarrow af(b+e)=be(a,f)\Rightarrow (a,b)R(e,f)\]
    Thus, \[(a,b)R(c,d)\] and \[(c,d)R(e,f)\]
    \[\Rightarrow (a,b)R(e,f)\]For all \[(a,b),(c,d),(e,f)\in N\times N.\]
    So, R is transitive on\[N\times N\].
    Hence. R being reflexive, symmetric and transitive, is an equivalence relation on \[N\times N\].


You need to login to perform this action.
You will be redirected in 3 sec spinner