A) \[\frac{3\sqrt{3}}{2},2\sqrt{3},6\sqrt{3}\]
B) \[2\sqrt{3},3\sqrt{3},6\sqrt{3}\]
C) \[9\sqrt{3},6\sqrt{3},2\sqrt{3}\]
D) \[\frac{3\sqrt{3}}{2},3\sqrt{3},6\sqrt{3}\]
Correct Answer: A
Solution :
[a] If polygon has n sides, then the number of diagonals |
\[=\frac{n(n-3)}{2}=9\] |
\[\therefore n=6\] |
![]() |
Now A and B can be adjacent vertices atternate vertices or opposite vertices |
If A and B are adjacent then side \[AB=2,\] then |
\[area=6\times \Delta OAB\] |
i.e. area \[=6\times \frac{\sqrt{3}}{4}\times {{(2)}^{2}}=6\sqrt{3}\] |
If A and B are alternate, then |
\[2\cos 30{}^\circ =a+a\cos 60{}^\circ \] |
\[\therefore \] Side \[a=\frac{2}{\sqrt{3}}\] |
![]() |
\[\therefore \] Area \[=6\times \frac{\sqrt{3}}{4}{{\left( \frac{2}{\sqrt{3}} \right)}^{2}}=2\sqrt{3}\] |
Finally if A and B are opposite vertices then side |
\[a=\frac{1}{2}AB=1\] |
Then area \[=6\times \frac{\sqrt{3}}{4}{{(1)}^{2}}=\frac{3\sqrt{3}}{2}\] |
You need to login to perform this action.
You will be redirected in
3 sec