A) \[{{x}^{2}}+{{y}^{2}}=\frac{4}{{{p}^{2}}}\]
B) \[{{x}^{2}}+{{y}^{2}}=4{{p}^{2}}\]
C) \[\frac{1}{{{x}^{2}}}+\frac{1}{{{y}^{2}}}=\frac{2}{{{p}^{2}}}\]
D) \[\frac{1}{{{x}^{2}}}+\frac{1}{{{y}^{2}}}=\frac{4}{{{p}^{2}}}\]
Correct Answer: D
Solution :
[d] Equation of AB is |
\[x\cos \alpha +y\sin \alpha =p;\] |
\[\Rightarrow \frac{x\cos \alpha }{p}+\frac{y\sin \alpha }{p}=1;\] |
![]() |
\[\Rightarrow \frac{x}{p/\cos \alpha }+\frac{y}{p/\sin \alpha }=1\] |
So co-ordinates of A and B are |
\[\left( \frac{p}{\cos \,\alpha },0 \right)\] and \[\left( 0,\frac{p}{\sin \alpha } \right)\]; |
So co-ordinates of midpoint of AB are |
\[\left( \frac{p}{2\cos \alpha },\frac{p}{2\sin \alpha } \right)=({{x}_{1}},{{y}_{1}})(say);\] |
\[{{x}_{1}}=\frac{p}{2\cos \alpha }\And {{y}_{1}}=\frac{p}{2\sin \alpha };\] |
\[\Rightarrow \cos \alpha =p/2{{x}_{1}}\] and \[\sin \alpha =p/2{{y}_{1}};\] |
Consider \[{{\cos }^{2}}\alpha +{{\sin }^{2}}\alpha =1\] |
\[\Rightarrow \frac{{{p}^{2}}}{4}\left( \frac{1}{{{x}_{1}}^{2}}+\frac{1}{{{y}^{2}}_{1}} \right)=1\] |
\[\therefore \] Locus of \[({{x}_{1}},{{y}_{1}})\] is \[\frac{1}{{{x}^{2}}}+\frac{1}{{{y}^{2}}}=\frac{4}{{{p}^{2}}}.\] |
You need to login to perform this action.
You will be redirected in
3 sec