A) \[3x+3y=40\]
B) \[3x+3y+40=0\]
C) \[3x-3y=40\]
D) \[3y-3x=40\]
Correct Answer: D
Solution :
[d] Let the parametric equation of drawn line |
\[\frac{x}{\cos \theta }=\frac{y}{\sin \theta }=r\Rightarrow x=r\cos \theta ,y=r\sin \theta \] |
Putting it in\['{{L}_{1}}'\], we get |
\[r\sin \theta =r\,cos\theta +10\] |
\[\Rightarrow \frac{1}{OA}=\frac{\sin \theta -\cos \theta }{10}\] |
![]() |
Similarly, putting the |
general point of drawn |
line is the equation of \[{{L}_{2}},\] |
we get |
\[\frac{1}{OB}=\frac{\sin \theta -\cos \theta }{20}\] |
Let \[P=(h,k)\] and \[OP=r\] |
\[\Rightarrow r\cos \theta =h,r\sin \theta =k,\] we have |
\[\frac{2}{r}=\frac{\sin \theta -\cos \theta }{10}+\frac{\sin \theta -\cos \theta }{20}\] |
\[\Rightarrow 40=3r\sin \theta -3r\cos \theta \Rightarrow 3y-3x=40.\] |
You need to login to perform this action.
You will be redirected in
3 sec