A) \[\frac{\sqrt{3}}{2}x+y=0\]
B) \[x+\sqrt{3y}=0\]
C) \[\sqrt{3}x+y=0\]
D) \[x+\frac{\sqrt{3}}{2}y=0\]
Correct Answer: C
Solution :
[c] The coordinates of points P, Q, R are\[(-1,0)\],\[(0,0)\], \[(3,3\sqrt{3})\], respectively. |
Slope of QR |
\[=\frac{{{y}_{2}}-{{y}_{1}}}{{{x}_{2}}-{{x}_{1}}}=\frac{3\sqrt{3}}{3}\] |
\[\Rightarrow \tan \theta =\sqrt{3}\] |
\[\Rightarrow \theta =\frac{\pi }{3}\Rightarrow \angle RQX=\frac{\pi }{3}\] |
\[\therefore \angle RQP=\pi -\frac{\pi }{3}=\frac{2\pi }{3};\] |
Let QM bisects the \[\angle PQR,\] |
\[\therefore \] Slope of the line \[QM=\tan \frac{2\pi }{3}=-\sqrt{3}\] |
\[\therefore \] Equation of line OM is \[(y-0)=-\sqrt{3}(x-0)\] |
\[\Rightarrow y=-\sqrt{3}x\Rightarrow \sqrt{3}x+y=0\] |
![]() |
You need to login to perform this action.
You will be redirected in
3 sec