JEE Main & Advanced Mathematics Vector Algebra Question Bank Self Evaluation Test - Vector Algebra

  • question_answer
    Let \[\overset{\to }{\mathop{p}}\,,\overset{\to }{\mathop{q}}\,,\overset{\to }{\mathop{r}}\,\] be three mutually perpendicular vectors of the same magnitude. If a vector \[\vec{x}\] satisfies the equation \[\overset{\to }{\mathop{p}}\,\times \{(\overset{\to }{\mathop{x}}\,-\overset{\to }{\mathop{q}}\,)\times \overset{\to }{\mathop{p}}\,\}+\overset{\to }{\mathop{q}}\,\times \{(\overset{\to }{\mathop{x}}\,-\overset{\to }{\mathop{r}}\,))\times \overset{\to }{\mathop{q}}\,\}\]\[+\overset{\to }{\mathop{r}}\,\times \{(\overset{\to }{\mathop{x}}\,-\overset{\to }{\mathop{p}}\,)\times \overset{\to }{\mathop{r}}\,\}=\overset{\to }{\mathop{0}}\,\] then \[\overset{\to }{\mathop{x}}\,\] is given by

    A) \[\frac{1}{2}(\overset{\to }{\mathop{p}}\,+\overset{\to }{\mathop{q}}\,-2\overset{\to }{\mathop{r}}\,)\]

    B) \[\frac{1}{2}(\overset{\to }{\mathop{p}}\,+\overset{\to }{\mathop{q}}\,+\overset{\to }{\mathop{r}}\,)\]

    C) \[\frac{1}{3}(\overset{\to }{\mathop{p}}\,+\overset{\to }{\mathop{q}}\,+\overset{\to }{\mathop{r}}\,)\]

    D) \[\frac{1}{3}(2\overset{\to }{\mathop{p}}\,+\overset{\to }{\mathop{q}}\,-\overset{\to }{\mathop{r}}\,)\]

    Correct Answer: B

    Solution :

    [b] Let \[|\overset{\to }{\mathop{p}}\,|=|\overset{\to }{\mathop{q}}\,|=|\overset{\to }{\mathop{r}}\,|=k\]  
    Let \[\hat{p},\hat{q},\hat{r}\] be unit vectors along \[\overset{\to }{\mathop{p}}\,,\overset{\to }{\mathop{q}}\,,\overset{\to }{\mathop{r}}\,\] respectively. Clearly \[\hat{p},\hat{q},\hat{r}\] are mutually perpendicular vectors, so any vector \[\overset{\to }{\mathop{x}}\,\] can be written as \[{{a}_{1}}\hat{p}+{{a}_{2}}\hat{q}+{{a}_{3}}\hat{r}\].
    \[\therefore \overset{\to }{\mathop{p}}\,\times \{(\overset{\to }{\mathop{x}}\,-\overset{\to }{\mathop{q}}\,)\times \overset{\to }{\mathop{p}}\,\}=(\overset{\to }{\mathop{p}}\,.\overset{\to }{\mathop{p}}\,)(\overset{\to }{\mathop{x}}\,-\overset{\to }{\mathop{q}}\,)-\{\overset{\to }{\mathop{p}}\,.(\overset{\to }{\mathop{x}}\,-\overset{\to }{\mathop{q}}\,)\}\overset{\to }{\mathop{p}}\,\]
    \[={{k}^{2}}(\overset{\to }{\mathop{x}}\,-\overset{\to }{\mathop{q}}\,)-(\overset{\to }{\mathop{p}}\,.\overset{\to }{\mathop{x}}\,)\overset{\to }{\mathop{p}}\,[\because \,\overset{\to }{\mathop{p}}\,.\overset{\to }{\mathop{q}}\,=0]\]
    \[={{k}^{2}}(\overset{\to }{\mathop{x}}\,-\overset{\to }{\mathop{q}}\,)-k\hat{p}.({{a}_{1}}\hat{p}+{{a}_{2}}\hat{q}+{{a}_{3}}\hat{r})k\hat{p}\]
    \[={{k}^{2}}(\overset{\to }{\mathop{x}}\,-\overset{\to }{\mathop{q}}\,-{{a}_{1}}\hat{p})\]
    Similarly, \[\overset{\to }{\mathop{q}}\,\times \{(\overset{\to }{\mathop{x}}\,-\overset{\to }{\mathop{r}}\,)\times \overset{\to }{\mathop{q}}\,\}={{k}^{2}}(\overset{\to }{\mathop{x}}\,-\overset{\to }{\mathop{r}}\,-{{a}_{2}}\hat{q})\]
    and  \[\overset{\to }{\mathop{r}}\,\times \{(\overset{\to }{\mathop{x}}\,-\overset{\to }{\mathop{p}}\,)\times \overset{\to }{\mathop{r}}\,\}={{k}^{2}}(\overset{\to }{\mathop{x}}\,-\overset{\to }{\mathop{p}}\,-{{a}_{3}}\hat{r})\]
    According to the given condition
    \[{{k}^{2}}(\overset{\to }{\mathop{x}}\,-\overset{\to }{\mathop{q}}\,-{{a}_{1}}\hat{p}+\overset{\to }{\mathop{x}}\,-\overset{\to }{\mathop{r}}\,-{{a}_{2}}\hat{q}+\overset{\to }{\mathop{x}}\,-\overset{\to }{\mathop{p}}\,-{{a}_{3}}\hat{r})=0\]
    \[\Rightarrow {{k}^{2}}\{3\overset{\to }{\mathop{x}}\,-(\overset{\to }{\mathop{p}}\,+\overset{\to }{\mathop{q}}\,+\overset{\to }{\mathop{r}}\,)-({{a}_{1}}\hat{p}+{{a}_{2}}\hat{q}+{{a}_{3}}\hat{r})\}=0\]
    \[\Rightarrow {{k}^{2}}[2\overset{\to }{\mathop{x}}\,-(\overset{\to }{\mathop{p}}\,+\overset{\to }{\mathop{q}}\,+\overset{\to }{\mathop{r}}\,)]=\overset{\to }{\mathop{0}}\,\]
    \[\Rightarrow \overset{\to }{\mathop{x}}\,=\frac{1}{2}(\overset{\to }{\mathop{p}}\,+\overset{\to }{\mathop{q}}\,+\overset{\to }{\mathop{r}}\,)[\because \,k\ne 0]\]


You need to login to perform this action.
You will be redirected in 3 sec spinner